Invariant Lagrangians , mechanical connections and the Lagrange - Poincaré equations

نویسنده

  • M. Crampin
چکیده

We deal with Lagrangian systems that are invariant under the action of a symmetry group. The mechanical connection is a principal connection that is associated to Lagrangians which have a kinetic energy function that is defined by a Riemannian metric. In this paper we extend this notion to arbitrary Lagrangians. We then derive the reduced Lagrange-Poincaré equations in a new fashion and we show how solutions of the Euler-Lagrange equations can be reconstructed with the help of the mechanical connection. Illustrative examples confirm the theory. Mathematics Subject Classification (2000). 34A26, 37J15, 53C05, 70H03.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalization of the Poincaré-Cartan Integral Invariant for a Nonlinear Nonholonomic Dynamical System

Based on the d’Alembert-Lagrange-Poincaré variational principle, we formulate general equations of motion for mechanical systems subject to nonlinear nonholonomic constraints, that do not involve Lagrangian undetermined multipliers. We write these equations in a canonical form called the Poincaré-Hamilton equations, and study a version of corresponding Poincaré-Cartan integral invariant which a...

متن کامل

Legendre Transformation for Regularizable Lagrangians in Field Theory

Hamilton equations based not only upon the Poincaré–Cartan equivalent of a first-order Lagrangian, but rather upon its Lepagean equivalent are investigated. Lagrangians which are singular within the Hamilton–De Donder theory, but regularizable in this generalized sense are studied. Legendre transformation for regularizable Lagrangians is proposed, and Hamilton equations, equivalent with the Eul...

متن کامل

m at h . N A ] 1 7 Se p 19 99 DISCRETE EULER - POINCARÉ AND LIE - POISSON EQUATIONS

In this paper, discrete analogues of Euler-Poincaré and Lie-Poisson reduction theory are developed for systems on finite dimensional Lie groups G with Lagrangians L : TG → R that are G-invariant. These discrete equations provide “reduced” numerical algorithms which manifestly preserve the symplectic structure. The manifold G×G is used as an approximation of TG, and a discrete Langragian L : G×G...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

Discrete Nonholonomic LL Systems on Lie Groups

This papers studies discrete nonholonomic mechanical systems whose configuration space is a Lie group G Assuming that the discrete Lagrangian and constraints are left-invariant, the discrete Euler–Lagrange equations are reduced to the discrete Euler–Poincaré–Suslov equations. The dynamics associated with the discrete Euler–Poincaré–Suslov equations is shown to evolve on a subvariety of the Lie ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008